Search results for "whispering gallery modes"
showing 6 items of 6 documents
Measurement of the strain-optic coefficients of PMMA from 800 to 2000 nm
2020
The strain-optic coefficients of PMMA are measured in a broad wavelength range from 800 to 2000 nm. The sensitivity of the azimuthal whispering gallery mode resonances to the strain is exploited to measure the strain-optic coefficients of PMMA micro-rods. The technique is based on measuring the wavelength shift of the resonances of both polarizations states, the TE and TM, when an axial strain is applied to the polymer rods. This method enables the determination of the strain-optic coefficients of the material in a broad wavelength range. In particular, in the near-infrared range, the PMMA exhibits negligible dispersion and anisotropy, and the strain-optic coefficients show constant values …
Whispering Gallery Modes: Advanced Photonic Applications
2019
Los micro-resonadores basados en Whispering Gallery Modes (WGMs) han atraido un gran interés en las últimas décadas debido a su fuerte confinamiento de la luz. Tales micro-resonadores pueden ser fabricados con diferentes geometrías y materiales. Estos micro-resonadores exhiben factores de calidad Q altos y volúmenes modales pequeños, lo que permite realizar un gran número de estudios y aplicaciones, como por ejemplo el estudio de efectos no-lineales ópticos. La delgada anchura spectral que presentan las resonancias WGM permite la medida de pequeñas perturbaciones de los parámetros de los micro-resonadores, con un límite de detección bajo. Esta tesis proporciona la caracterización experiment…
Application of WGM Resonances to the Measurement of the Temperature Increment of Ho and Ho-Yb Doped Optical Fibers Pumped at 1125 and 975 nm
2021
Optical fiber characterization using whispering gallery mode resonances of the fiber itself has been demonstrated to be a powerful technique. In this work, we exploit the thermal sensitivity of whispering gallery mode resonances to characterize the pump-induced temperature increment in holmium doped and holmium-ytterbium codoped optical fibers. The technique relies on the measurement of the resonances’ wavelength shift due to temperature variation as a function of the pump power. Holmium doped fibers were pumped to the second excited level 5I6 of the Ho3+ ion using a laser diode at 1125 nm and ytterbium-holmium codoped fibers to the 2F5/2 level of the Yb3+ ion by a laser diode at 975 nm. Ou…
Mode cleaning in graphene oxide-doped polymeric whispering gallery mode microresonators
2020
The strategy to incorporate graphene oxide (GO) in a composite material offers significant opportunities to realize compact photonic devices, such as saturable absorbers and polarization selective devices. However, the processing of GO-based composites by direct laser writing, which would afford vast patterning and material flexibility in a single step process, has been little addressed. In this work, we investigated the mechanisms underlying a mode cleaning effect in polymeric whispering gallery mode microresonators containing GO, aiming at the development of on-chip integrable photonic devices. We fabricated the microresonators (cavity loaded Q-factor of 20 000 at 1550 nm) in a single ste…
Parametrical Optomechanical Oscillations in PhoXonic Whispering Gallery Mode Resonators
2019
AbstractWe report on the experimental and theoretical analysis of parametrical optomechanical oscillations in hollow spherical phoxonic whispering gallery mode resonators due to radiation pressure. The optically excited acoustic eigenmodes of the phoxonic cavity oscillate regeneratively leading to parametric oscillation instabilities.
Optomechanical oscillations in microbubble resonators: Enhancement, suppression and chaotic behaviour
2019
We report on the experimental and theoretical analysis of parametrical optomechanical oscillations in hollow spherical PhoXonic whispering gallery mode resonators due to radiation pressure. The optically excited acoustic eigenmodes of the PhoXonic cavity oscillate regeneratively leading to parametric oscillation instabilities.